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In birds, multiple parasitism is the laying of two or more eggs by one or more parasitic females in a single
host nest. Several cognitive mechanisms may explain how multiple parasitism could affect parasite egg
discrimination by hosts. Rejection based on discordance predicts that multiple parasitism provides
a perceptually more error-prone way for hosts to reject parasitism because more foreign eggs decrease
the chance that any one egg is perceived as most dissimilar and recognized as foreign, unless parasite
eggs are all similarly highly nonmimetic. In contrast, rejection based on clutch uniformity predicts that in
multiple parasitism egg rejection is more error-proof if mimicry by parasite eggs is variable, because
increased variation in egg appearance makes for easier egg rejection for hosts. Finally, true egg recog-
nition, that is, rejection based on memory of the host’s own eggs, predicts no differences in rejection
rates from nests with single or multiple parasitism. We studied common cuckoos, Cuculus canorus,
parasitizing a population of great reed warblers, Acrocephalus arundinaceus, in Hungary where multiple
parasitism was frequent. Hosts rejected parasite eggs less often in nests with multiple parasitism than in
nests with single parasitism. These observations were confirmed by experimental parasitism and support
the rejection based on discordance hypothesis. As hosts were more likely to tolerate cuckoo eggs in nests
with multiple parasitism, we found that multiple parasitism more than doubled cuckoos’ reproductive
output per host nest compared to single parasitism.
� 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Avian obligate brood parasites lay their eggs in nests of host
species, and leave parental care of their offspring to the unrelated
foster parents (Davies 2000). Caring for a parasite offspring is
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a costly task for a host (Hauber 2006). For example, in evictor
species the young brood parasite attempts to displace all nest
content (Wyllie 1981; Honza et al. 2007a), including eggs and
nestmates. Consequently, the brood parasite typically grows up
alone, eliminating all host reproduction (Kilner 2005; Krüger
2007). Hosts can reduce the negative consequences of brood
parasitism through antiparasite defence, involving aggression
against the adult parasite (Davies & Brooke 1988; Røskaft et al.
2002a; Davies et al. 2003; Moskát 2005; Dyrcz & Halupka 2006;
Honza et al. 2006), egg discrimination (e.g. Davies & Brooke 1989;
Moksnes et al. 1991) and/or chick discrimination (Payne et al. 2001;
Langmore et al. 2003; Schuetz 2005; Grim 2006; Anderson &
Hauber 2007). Consequently, the evolution of both brood para-
sitism and host responses reflects naturally and sexually selected
morphological and life history trade-offs within and across parasite
taxa and refined perceptual and cognitive mechanisms of host
species’ defences (Krüger & Davies 2002; Garamszegi & Avilés
d by Elsevier Ltd. All rights reserved.
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2005; Hauber & Kilner 2007; Krüger et al. 2007; Parejo & Avilés
2007).
Consequences of Multiple Parasitism

When the relative population density of brood parasites is high
compared to that of hosts, some host nests may contain more than
one parasite egg, so that they are multiply parasitized (Wyllie 1981;
Moskát et al. 2006). Irrespective of whether multiple parasitism (or
superparasitism) is due to the laying of eggs by the same or different
females (McLaren et al. 2003; Ellison et al. 2006), it is typically
thought to be costly to brood parasites because parasitic chicks
compete more vigorously than do host chicks (Hauber 2003),
leading to the reduction of per capita egg-to-fledging success of the
parasite (Trine 2000; Hoover 2003). Multiple parasitism is espe-
cially costly for evictor brood parasites whose chicks displace all
eggs and nestmates following hatching (Honza et al. 2007a) and it
has been hypothesized to be implicated in the evolution of both egg
removal by laying parasites and the similarity between host and
specialist parasite eggs (Davies & Brooke 1988; Brooker et al. 1990).

Multiple parasitism is common in some hosts of the brown-
headed cowbird, Molothrus ater (Trine 2000; Hoover 2003;
McLaren et al. 2003), the shiny cowbird, Molothrus bonariensis (Lea
& Kattan 1998; Tuero et al. 2007), the bronzed cowbird, Molothrus
aeneus (Ellison et al. 2006), and also in the great spotted cuckoo,
Clamator glandarius (Martı́nez et al. 1998; Soler & Soler 1999).
However, it is a relatively rare phenomenon in hosts of the common
cuckoo, Cuculus canorus (hereafter ‘cuckoo’), an evictor brood
parasite, which are typically parasitized at a rate below 20% (e.g.
Schulze-Hagen 1992; Davies 2000; Rutila et al. 2002; Avilés et al.
2005; Antonov et al. 2006, 2007; Stokke et al. 2007a). Thus, most
cuckoo chicks that hatch successfully (Øien et al. 1998) do not need
to compete with or evict other parasite eggs and chicks from
parasitized broods. In contrast, an unusually high level (ca. 64%) of
cuckoo parasitism occurs in the great reed warbler, Acrocephalus
arundinaceus, in the Hungarian Great Plain (Moskát & Honza 2002),
where a high rate of multiple parasitism has also been reported:
35% of the parasitized clutches (N ¼ 123) were multiply parasitized
by two to four cuckoo eggs, and so 58% of all cuckoo eggs (N ¼ 187)
were found in nests with multiple cuckoo eggs (Moskát & Honza
2002). Egg collections in Hungarian museums (C. Moskát, unpub-
lished data) and other reports on historical data suggest that such
a high level of parasitism has existed for at least the last 80–100
years (e.g. Baker 1942; Molnár 1944; Moskát & Honza 2002).

Behavioural Responses of Hosts

Multiple parasitism mayalso have critical implications for the host’s
reproductive success and behavioural responses to parasitism. At the
fitness level, more parasite eggs mean greater chances of elimination or
reduction of the host’s own brood and caring for more genetically
unrelated young, thus reducing the foster parents’ current (Trine 2000;
Hauber 2002; Hoover 2003) and future reproductive outputs (Payne &
Payne 1998; Hauber 2002; Hauber & Montenegro 2002).

The evidence suggests a negligible effect of multiple parasitism
on recognition by hosts of nonevictor parasites. Indeed, experi-
ments with Molothrus cowbird hosts have shown that single
parasite eggs are as likely to be accepted or rejected as multiple
foreign eggs (e.g. Rothstein 1975a; Davies 2000). Similar results
were reported for magpie, Pica pica, hosts of great spotted cuckoos
in Spain (Soler & Møller 1990). In contrast, although studies of
multiple parasitism on hosts of evictor parasites are sparse (e.g.
Brooker et al. 1990), these suggest that multiple parasitism may
affect host recognition. For instance, Honza & Moskát (2005)
experimentally parasitized great reed warbler clutches in Hungary
by two different, but both nonmimetic, model common cuckoo
eggs, and found increased host rejection of the nonmimetic eggs
relative to experimental single parasitism with a nonmimetic egg.
However, in natural cases of cuckoo parasitism in the Hungarian
great reed warbler population, the cuckoo eggs generally show
a good visual match as judged by human eyes (Baker 1942;
Southern 1954; Moskát & Honza 2002; Lovászi & Moskát 2004;
Fig. 1) and spectrophotometry (Cherry et al. 2007a). If mimicry is so
good, hosts may treat foreign eggs as their own (Hauber et al. 2006;
Moskát & Hauber 2007). Therefore, the research by Honza & Moskát
(2005) cannot be regarded as a typical case of parasitism in that
naturally parasitized great reed warbler population. In addition, the
use of two nonmimetic eggs in that earlier experiment did not
allow a test for contrasting predictions of alternative cognitive
explanations for egg rejection. Here, we designed a new treatment
to simulate parasitism more realistically to add experimental data
to observations of natural parasitism and to address alternative
cognitive scenarios involved in the hosts’ responses to multiple
parasitism.
Alternative Cognitive Mechanisms of Host Responses

The rejection by discordance hypothesis (Rothstein 1975b, 1982;
Marchetti 2000; Servedio & Lande 2003) assumes that egg
appearance is perceived relative to the appearance of other eggs in
the clutch so as to generate a distribution of pairwise dissimilar-
ities. In this cognitive scenario, therefore, it is parasitism per se,
rather than the identity of individual parasite eggs that is perceived
by the host (Hauber et al. 2004; Hoover et al. 2006). Accordingly,
this cognitive scenario predicts that multiple parasite eggs of
different levels of mimicry will lead to lower rejection rates than
single parasite eggs because more foreign eggs would reduce the
chance that any single egg is considered the most dissimilar. In
contrast, when two parasite eggs are highly dissimilar in multiple
parasitism, each foreign egg is expected to be recognized, so this
method would result in increased rejection rates.

Alternatively, the hypothesis that rejection is based on limited
intraclutch variation (Davies & Brooke 1989; Stokke et al. 1999;
Moskát et al. 2008a; Schulze-Hagen et al. 2009) predicts that
through evolutionary time, host species or populations of a host
species that are more frequently parasitized by cuckoos would
evolve eggs more homogeneous in appearance within a nest than
populations with lower rates of parasitism (Øien et al. 1995; Soler &
Møller 1996; Moskát et al. 2002; Avilés & Møller 2003). From
a cognitive perspective, individual hosts would use clutch unifor-
mity of their perceived own eggs to identify parasitism (Stokke
et al. 1999; Moskát et al. 2008a). Thus, provided that foreign eggs
are nonmimetic (i.e. they cannot be considered among the host’s
own set of eggs), multiple parasitism in a host clutch will lead to
increased recognition of the parasite eggs. If a nest contains two or
more parasite eggs that differ in the extent of their mimicry relative
to the host’s eggs, this should also increase the perceived variation
of the entire clutch within the nest and lead to increased rejection
of parasitism.

Finally, the true egg recognition (recognition from memory)
hypothesis predicts that birds compare the characteristics of eggs
in a clutch to a memory template of their own or otherwise
acceptable egg phenotype, which could be inherited and/or learned
(Rothstein 1974; Moksnes 1992; Hauber & Sherman 2001; Hauber
et al. 2006; Moskát & Hauber 2007). If the match of a parasite egg to
the internal template is close, hosts would accept this egg as their
own (Reeve 1989; Davies et al. 1996; Hauber et al. 2006; Moskát &
Hauber 2007; Stokke et al. 2007b). Thus, this scenario predicts the
same frequency of rejection for foreign eggs for single and multiple



Figure 1. (a) Photos of great reed warbler clutches parasitized with multiple common
cuckoo eggs. Parasite eggs are indicated by arrows. (b) Row 1: highly maculated great
reed warbler eggs from central Hungary (rare type). Rows 2–4 provide an example of
our experimental manipulation on typical host eggs. Row 2: the clutch before exper-
imental manipulation; row 3: clutch with one 12-spot mimetic egg; row 4: clutch with
one 12-spot mimetic and one yellow/12-spot nonmimetic egg.
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parasitism by parasite eggs that have the same degree of similarity
to host eggs.

Importantly, these alternative cognitive mechanisms also make
contrasting predictions about the method of parasite egg rejection
(i.e. egg ejection or nest desertion). Specifically, the rejection by
clutch uniformity and the true recognition hypotheses do not
predict differences in the method of rejection between nests with
single and multiple parasitism, but the rejection based on discor-
dance hypothesis predicts more nest desertions than ejections for
multiple parasitism because it is parasitism per se and not the
identity of the foreign egg that is recognized (Servedio & Hauber
2006).

Our aim in this study was to contrast egg rejection behaviours of
great reed warbler hosts towards real cuckoo eggs in nests with
single or multiple cuckoo parasitism in the context of predictions of
these alternative cognitive mechanisms of foreign egg recognition.
We did not address instances of repeated or sequential parasitism
of the same clutch in this study (i.e. parasitism of a host clutch with
a previously ejected cuckoo egg, which represents novel cognitive
challenges for cuckoo hosts: Hauber et al. 2006; Honza et al. 2007b)
and we did not have the genetic tools to identify whether one or
more female cuckoos were responsible for multiple parasitism. We
compared these observations on natural parasitism with the
outcomes of a consistent methodology of experimental single or
multiple parasitism, where we artificially parasitized a set of non-
parasitized host clutches by painting one or two of the hosts’ own
eggs.

Impact of Host Responses on Cuckoo Fitness

If the rejection rate of cuckoo eggs by hosts differed between
nests with single versus multiple parasitism, we would also find an
effect on cuckoos’ reproductive success from clutches with single
versus multiple parasitism. We therefore assessed whether more
evictor parasite eggs represented a cost for individual cuckoo young
because hatchling cuckoos may eliminate other parasite eggs and
nestmates. Alternatively, more than one parasite egg in the same
host nests may decrease host rejection rates of foreign eggs and,
thus, increase the probability that at least one parasite egg hatches
successfully in a parasitized clutch. To achieve these goals, we
contrasted the proportions of parasitized clutches yielding a fledg-
ling cuckoo between nests containing single versus multiple
cuckoo eggs.

METHODS

Study Area and Species

We conducted the study in the surroundings of Apaj and
Kiskunlacháza-Bankháza, central Hungary (47�070N, 19�060E), ca.
40–50 km south of Budapest (Moskát & Honza 2002). Great reed
warblers breed in 2–4 m wide strips of reed along both sides of
small channels. We collected observational data by monitoring
great reed warbler nests and measuring behavioural responses to
single and multiple parasitism by cuckoos across three years
1998–2000. Nests were found at the building stage, or at the start of
the laying stage, and monitored daily during the egg-laying stage
(day 0 ¼ day of first egg laid), and for at least 6 consecutive days or
until rejection if parasitism took place until rejection, or until
successful fledging if rejection did not take place. Newly laid eggs
were assigned to host or parasite species based on size and
maculation and marked with a fibre pen for individual identifica-
tion. Laying female cuckoos typically remove one egg from the
clutch (86%), either a host egg or an already present cuckoo egg, but
rarely two eggs (6%), or no egg (8%) at all (Moskát & Honza 2002).
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Although spectrophotometry studies revealed a generally close
match across all wavelengths between cuckoo and great reed
warbler eggs in this population (Cherry et al. 2007a, b), a wide
range of host–parasite egg mismatch was revealed by human
scoring (28% perfect, 23% good, 27% moderate, 16% poor and 6%
bad as reported by Moskát & Honza 2002, following the categories
proposed by Moksnes et al. 1993). Furthermore, great reed
warblers reject ca. 34% of naturally laid cuckoo eggs, and are more
likely to reject more poorly mimetic eggs, as judged by human
observations (Moskát & Honza 2002) or measured by spectro-
photometry (Cherry et al. 2007a). Common cuckoo eggs are
typically larger than eggs of most of their hosts (Krüger & Davies
2002); however, in our study site egg volumes of this relatively
large cuckoo host and its brood parasite were similar (Török et al.
2004; see also Honza et al. 2001 for data from the Czech
Republic), justifying the use of painted conspecific eggs as
experimental cuckoo eggs (see below).

Host Responses to Natural Parasitism

Host reactions towards each cuckoo egg were categorized as
acceptance or rejection with the mode of rejection specified (i.e.
ejection, burial of the parasite egg or the desertion of the parasit-
ized nest; for more details see Moskát & Honza 2002). In nests with
more than one cuckoo egg, hosts showed the same reactions
towards each of the two or more cuckoo eggs in clutches with
multiple parasitism, except in one case when one of three cuckoo
eggs was ejected, but the other two were accepted. This clutch was
omitted from the data set because of its unsuitability for an analysis
where the response variable was binary, that is, acceptance or
rejection of all parasitism per nest. We also identified cases of
ejection costs (Stokke et al. 2002) when host eggs disappeared
together with the cuckoo eggs from the nests, while ejection errors
were recorded when host eggs disappeared but cuckoo eggs
remained in the nest.

Our quantitative analyses included clutches that contained one
to four cuckoo eggs at the same time. In the present study we did
not use data on repeated or sequential parasitism, that is, when the
laying cuckoo removed a cuckoo egg, or a female cuckoo laid
another egg after a burial or ejection of a previously laid cuckoo egg
by the host. This ensures that we evaluated host reaction to
multiple parasitism, that is, when the host had the chance to
inspect two or more parasite eggs at the same time. Also, only
clutches that had at least three eggs (host and parasite egg numbers
combined) were considered (the modal clutch size in this pop-
ulation is five eggs: Moskát et al. 2008b). Great reed warblers’
responses to parasitism are affected by the absence of their own
eggs in the nest at the early laying stage (Moskát & Hauber 2007),
so we considered parasitized clutches that contained at least one or,
generally, more host eggs. However, we included two cases of egg
burial in cases of single parasitism, when burial was incomplete
and the upper half of the parasite eggs were visible in the clutch.
The conclusions did not change when we omitted these two nests
from the analyses.

Cuckoos lay an egg every second day (Wyllie 1981) and in
parasitized clutches multiple cuckoo eggs are more likely to be laid
on different days (91% of cases; Hauber et al. 2006). Although we
did not analyse the parentage of the cuckoo eggs by molecular
techniques (Marchetti et al. 1998), our photos of multiple para-
sitism showed that the same nests were typically parasitized with
eggs that clearly differed in colour and pattern (for examples see
Fig. 1a), suggesting that they were parasitized by different cuckoo
females (cf Moksnes et al. 2008).

In our study area the first cuckoo eggs were laid in a nest at
a mean stage �SD of 0.9 � 1.5 days (range �2 to 4, N ¼ 20; day
0 ¼ 1st egg laid). Additional cuckoo eggs were also laid after day 9.
In an exceptional case, the first cuckoo egg was laid in the nest 2
days before the host female started her egg laying, and a second
cuckoo egg was laid in the incubation stage, 2 days after the hosts
completed the clutch.

Experimental Manipulations

Egg discrimination by great reed warblers in response to single
versus multiple cuckoo parasitism was also tested through exper-
imentation in 2006 with different egg types. Experimental eggs
were produced by the manipulation of the hosts’ own eggs; thus
clutch size did not change, which simulated egg removal and
replacement by the laying cuckoo.

Single experimental parasitism
Mimetic egg. For single parasitism we used two egg types. First, 12
dark-brown spots 4–5 mm in diameter were painted on the
eggshell surface with a brown fibre pen (Faber-Castell OHP
permanent, colour code 78, size 1525, Faber-Castell Inc., Stein,
Germany; Fig. 1b, rows 3 and 4, second egg on the left). The colour
of this pen was very similar to the dominant spot colour of hosts as
revealed by spectrophotometry, and the size of these spots was
within the range of natural spots (range < 1–6.1 mm; Moskát et al.
2008c). Typically the clutch needed a close inspection for humans
to realize that the manipulated egg differed from the host’s own
eggs, so we called this egg type ‘mimetic’. A previous experimental
study revealed only 8% rejection rate for this egg type in single
parasitism (one case out of 12 eggs and nests; Moskát et al. 2008c),
and in the present study great reed warblers also tended to accept
these eggs in clutches when no other eggs were manipulated (20%
rejection of N ¼ 10 eggs and nests) in similar frequencies (Fisher’s
exact test, two-tailed: P ¼ 0.571). The disappearance of non-
manipulated great reed warblers’ own eggs at unparasitized nests
(8.7%, in 4/46 nests between 1998 and 2005, C. Moskát, unpub-
lished data) did not differ significantly from the rejection rate of
these artificially spotted eggs in our population (Fisher’s exact test:
P ¼ 0.673).

Nonmimetic egg. The mimetic egg type was expected to be
rejected at a relatively low rate by hosts, so we also designed
a less mimetic egg type, to be distinguishable from the host’s own
eggs, causing hosts to reject them at a relatively high rate. We
modified host eggshell colour by painting the natural eggshell
surface with a highlighter pen, because a previous study revealed
that such changes in eggshell surface colours increased hosts’
rejection rates significantly (Moskát et al. 2008c; see also Honza
et al. 2007c for another species). So for the second egg type we
painted the background colour of a host egg with a yellow high-
lighter pen (Stabilo Boss art No. 70/24, Stabilo Inc., Haroldsberg,
Germany). This pen made the eggs a light greenish-yellow
(Fig. 1b). We called this egg type nonmimetic. Many kinds of green
and yellow shades can be found on both host and parasite
eggshells in our population; however, these are very rare forms
(<1% frequency, Moskát & Honza 2002; Moskát et al. 2008c). We
also painted 12 brown spots as for the mimetic egg over the
yellow highlighter marking (Fig. 1b, row 4, egg on the right), to
ensure that the two egg types differed in only one parameter (i.e.
background colour). Great reed warblers showed the same strong
rejection responses (100% rejection) against this combined yellow/
12-spot (nonmimetic) egg type as seen against other egg types
used in previous experimental parasitism on which the overall
background colour, not the maculation, of great reed warbler host
eggs was manipulated (i.e. dark-brown-painted host eggs: 92%
rejection rate; Hauber et al. 2006). We checked the content of
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Figure 2. Rejection rate in response to real cuckoo eggs in nests naturally parasitized
by one (‘single’) and two or three (‘multiple’) parasite eggs. In calculations a multiply
parasitized nest was considered as one case. Numbers above bars indicate numbers of
cases. *P < 0.005; Fisher’s exact test.
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experimentally parasitized nests daily for 6 consecutive days to
detect rejection.

Multiple experimental parasitism
At our study site, half of naturally laid cuckoo eggs showed good

to perfect mimicry and the other half showed moderate to bad
mimicry (Moskát & Honza 2002). For this reason, we induced
multiple parasitism experimentally by introducing one of our
mimetic eggs and one of our nonmimetic eggs on day 4 in the hosts’
egg-laying period. As we manipulated two host eggs from each
nest, the clutch size remained the same, as in natural cuckoo
parasitism (see above). This approach was specifically aimed at
testing the prediction of the decreased clutch uniformity hypoth-
esis by introducing two different artificially manipulated egg types
into nests to simulate multiple parasitism.

Control
We also used a control group of nonparasitized host clutches in

the year of the experiment where we did not manipulate eggs, but
only checked and marked them as in cases of experimental para-
sitism. No egg was ejected or buried and no nest was abandoned or
showed recognition error (N ¼ 8), which is the same result
obtained in previous years for control clutches (0/13 desertions,
Hauber et al. 2006; 0/12 desertions, Moskát et al. 2008c), indicating
no host sensitivity for nest checks. However, this is a relatively
small sample size for monitoring recognition errors.

Cuckoo Reproductive Success

We monitored the fate of parasitized nests until the cuckoo
chick fledged. We calculated hatching success of cuckoos as the
proportion of nests with cuckoo chicks that hatched. We also
calculated fledging success as the proportion of nests that produced
a cuckoo fledgling, in relation to the number of parasitized clutches.
Both hatching and fledging success were calculated for single and
multiple parasitized nests separately, with depredated nests
removed from the analyses.

Statistical Tests

Individual breeding pairs of hosts were not colour-banded in the
population, but only a single observation or experiment was
recorded from each territory and breeding philopatry is generally
low in this population (Moskát et al. 2008b), thereby limiting the
possibility of pseudoreplication. All statistical tests were two-tailed.
Analyses were carried out using the programs Statistica 5.1 (Statsoft
Inc., Tulsa, OK, U.S.A.) and Statview 5.0.1 (SAS Institute Inc., Cary,
NC, U.S.A.), and binary logistic regressions were computed in SPSS
version 9.0 (SPSS Inc. Chicago, IL, U.S.A.). For the binary logistic
regression analyses, the host’s response was the dependent vari-
able (accept or reject), with the number of cuckoo eggs, host clutch
size, laying date (Gregorian day) and year treated as covariates in
the initial model. Stepwise variable selection was applied by
choosing the option ‘backward conditional’ with standard criteria.

Ethical Note

Our observational data came from monitoring the nesting
attempts of wild birds as part of a long-term project on the
breeding biology of great reed warblers. No birds abandoned nests
because of our visits. The experimental test of our hypotheses also
required the manipulation of some great reed warbler eggs. No
great reed warbler eggs were crushed during our treatments, and
we detected no effect of the manipulation on egg hatchability in
comparison with nonexperimental nests. Our study was licensed
by the Duna-Ipoly National Park, the Kiskunság National Park and
the Hungarian Inspectorate for Environment, Nature and Water.

RESULTS

Host Responses to Natural Parasitism

Altogether, 45 cases of single parasitism and 34 cases of multiple
parasitism with 78 cuckoo eggs (two, three or four cuckoo eggs in
the frequency of 25, 8 and one, respectively) were detected in this
study. Rejection rates of great reed warblers towards cuckoo eggs
differed significantly between naturally parasitized clutches with
single versus multiple parasitism (40% and 12% rejection rates in
nests of single and multiple natural parasitism, respectively; Fish-
er’s exact test: P ¼ 0.004; Fig. 2). Rejection rates did not differ
whether nests were parasitized by two or three to four cuckoo eggs
(12% and 11% rejection rates with corresponding sample sizes of
N ¼ 25 and N ¼ 9, respectively; Fisher’s exact test: P ¼ 1.0). A binary
logistic regression (with the Wald statistic, W) revealed that laying
date was not significantly related to rejection rates (b ¼ �0.036,
W1 ¼1.5, P ¼ 0.30; laying date was removed at step 2), nor was the
year of observation (b ¼ 0.65, W1 ¼ 2.4, P ¼ 0.13; year was removed
at step 3). In the final model, the rejection rate of cuckoo eggs by
great reed warbler hosts was negatively associated with the
increasing number of cuckoo eggs per clutch (b ¼ �1.76, W1 ¼ 6.6,
P ¼ 0.010) and positively with number of host eggs (b ¼ 0.84,
W1 ¼7.8, P ¼ 0.005). The discriminatory ability of the logistic model
was 77.6%, and the Hosmer–Lemeshow goodness-of-fit test was not
statistically significant (c7

2 ¼ 8.9, P ¼ 0.26), indicating good power
and good calibration of the model, respectively. Nests deserted
during the laying stage had no chance of being completed and,
consequently, they had smaller clutches, which resulted in the
negative relationship between clutch size and egg rejection
(Spearman rank correlation: rS ¼ �0.31, P ¼ 0.006). None the less,
even without the clutch size term included, the relative contribu-
tions of each predictor variable to the overall model remained
similar (model discriminative power: 72.4%; the number of cuckoo
eggs per nest: b ¼ �1.7, W1 ¼ 6.8, P ¼ 0.009; laying date: P ¼ 0.72;
year: P ¼ 0.18).
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The method of rejection differed consistently between cases of
single and multiple parasitism: in clutches with single parasitism
(N ¼ 18 of 45 nests) ejection was the most frequent method of
rejection (13/18, 73%) with the remaining cases being 11% of burial
and 16% of nest desertion. In multiple parasitism, hosts rarely
rejected cuckoo eggs (4/34 nests, 7/78 eggs). Egg ejection was
observed in only one case (1/4 nests, 1/7 eggs) and all other
rejections were by desertion (3/4 nests, 6/7 eggs). Thus, nest
desertion was the more frequent method of rejection at nests with
multiple parasitism (Fisher’s exact test: P ¼ 0.046), and ejection the
more frequent response in nests with single parasitism (Fisher’s
exact test: P ¼ 0.005).

Ejection costs were observed only in nests with single para-
sitism (4/13 nests, i.e. 31% of nests where the cuckoo egg was
ejected). Typically one host egg was lost per nest, but in one case
three host eggs disappeared. Ejection errors were observed in four
nests where the cuckoo eggs were accepted, but only in cases of
single parasitism (4/27 cases, i.e. 15% of nests where the parasite
egg was accepted, with the loss of three eggs in one nest and one
egg in each of the other three nests).

Experimental Parasitism

With respect to the nonmimetic egg, great reed warblers
rejected all manipulated eggs in response to single parasitism (14
nonmimetic eggs in 14 nests). When hosts were exposed to
experimental parasitism by the two different egg types (multiple
parasitism with one mimetic and one nonmimetic experimental
eggs), they rejected 60% of nonmimetic eggs (nine nonmimetic
eggs in 15 nests; Fig. 3). The mimetic egg was also rejected in six
cases from 15 nests of multiple experimental parasitism (40%)
together with a nonmimetic egg. The rejection rate of the mimetic
egg when it was introduced together with a nonmimetic egg did
not differ significantly from that when the mimetic egg was
introduced alone (two mimetic eggs rejected in 10 nests, 20%;
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Figure 3. Rejection rates by great reed warblers against nonmimetic eggs when nests
were experimentally parasitized with one nonmimetic egg (‘single’), or with one
mimetic and one nonmimetic egg each (‘multiple’). Numbers above bars indicate
numbers of cases. *P < 0.005; Fisher’s exact test.
Fisher’s exact test: P ¼ 0.68). In contrast to natural parasitism,
only ejection was observed as the method for rejection of the
parasite eggs in both single and multiple experimental brood
parasitism.

Hosts with multiple experimental parasitism showed a signifi-
cantly lower rate of rejection compared to single parasitism with
respect to the nonmimetic egg only (binary logistic regression:
b ¼ �2.6, W1 ¼ 4.7, P ¼ 0.032; model discriminative power was
84%). Neither laying date (P ¼ 0.37) nor clutch size (P ¼ 0.34) had an
effect on rejection, and they were removed from the binary logistic
model by the stepwise procedure (b ¼ 0.16, W1 ¼ 0.79, P ¼ 0.37 and
b ¼ 0.91, W1 ¼ 0.91, P ¼ 0.34 for laying date and clutch size,
respectively). The lack of laying date and clutch size effects suggests
similarities in the putative age and quality of host parents between
our experimental treatments (Lotem et al. 1992).

Cuckoo Reproductive Success

In a counterintuitive pattern of this evictor parasite’s breeding
success, having more than one cuckoo egg per host clutch increased
the chance that a cuckoo egg would be accepted and eventually
hatch. This meant that a greater proportion of multiply parasitized
nests contained a cuckoo hatchling than did singly parasitized nests
(19/64 and 15/28 in single and multiple parasitism, respectively;
Fig. 4, c1

2 ¼ 4.2, P ¼ 0.041).
In each case only a single cuckoo chick survived and there was

no difference in the hatching-to-fledging survival rate of cuckoo
chicks between clutches with originally single versus multiple
parasitism: 93% of hatched cuckoo chicks fledged successfully from
nests with single parasitism (N ¼ 14 hatchlings), and 75% from
multiply parasitized nests (N ¼ 20 hatchlings, with four nests
containing two cuckoo hatchlings; c1

2 ¼ 0.17, P ¼ 0.68). We also
found similar productivities of those nests where at least one
cuckoo egg hatched (single parasitism: 93%, N ¼ 14 nests; multiple
parasitism: 94%, N ¼ 15 nests; c1

2 < 0.01, P ¼ 0.99). In contrast, the
proportion of host broods with the cuckoo chick surviving to
fledging (ca. 18–21 days; C. Moskát, unpublished data) in nests with
multiple parasitism proved to be greater than that in nests with
single parasitism (13/59 and 15/30 in single and multiple para-
sitism, respectively; c1

2 ¼ 7.2, P ¼ 0.007; Fig. 5).
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Figure 4. Percentage of host nests with cuckoo hatchlings from clutches with single or
multiple parasitism. Numbers above bars indicate numbers of cases. *P < 0.05; chi-
square test (see Results).



C. Moskát et al. / Animal Behaviour 77 (2009) 1281–1290 1287
As cuckoo fledging rates were significantly greater in nests with
multiple parasitism, we expected lower survival rates of cuckoo
eggs in single parasitism. However, survival rates to fledging did not
differ statistically in single and multiple parasitism (13 fledglings
from 96 cuckoo eggs (0.135 fledgling/egg) in single parasitism, and
15 fledglings from 118 cuckoo eggs found in 50 nests (0.127 fledg-
ling/egg) in multiple parasitism; c1

2 ¼ 0.02, P ¼ 0.88). We explain
this finding by the lower survival rate of cuckoo eggs on a per capita
basis in nests with multiple than single parasitism (see above),
which overcompensated for the effect of the hosts’ lower rejection
rate in nests with multiple parasitism.
DISCUSSION

Our results revealed a consistent difference, in both the obser-
vational cases and the experimental results, in great reed warblers’
responses to variable numbers of cuckoo eggs, as we detected
higher rejection rates to natural cuckoo eggs or experimental eggs
in nests with single versus multiple parasitism. Thus, we reject the
hypothesis of cuckoo egg rejection by clutch uniformity which
predicts that more cues from more parasite egg appearances aid
hosts to improve egg discrimination by decreasing egg similarity
within the clutch and, thus, presumably by increasing behavioural
rejection of foreign eggs. The significant differences in host
responses between nests with varying numbers of cuckoo eggs also
allow us to discount the true recognition scenario that predicts that
rejection rates would be similar (and low for mimetic parasite eggs)
in host nests with single or multiple parasitism.

In contrast, the hypothesis of rejection based on discordance
was supported by both the observational and the experimental
results. Specifically, this scenario predicts that more foreign eggs
decrease the ability of the hosts to discriminate their own from
foreign eggs based on pairwise differences between egg appear-
ances (Marchetti 2000; Servedio & Lande 2003; Servedio & Hauber
2006) in parasitized clutches. The methods of the rejection of
cuckoo eggs were also in support of the rejection by discordance
hypothesis (as predicted by the model of Servedio & Hauber 2006),
because cuckoo eggs were more likely to be rejected by ejection
from nests with single parasitism while nests with multiple para-
sitism were more likely to be deserted. Increased rejection costs
59

30

Single Multiple

*

100

75

50

25

0

%
 F

le
d

ge
d

Figure 5. Percentage of nests with fledged cuckoo chicks from clutches with single or
multiple parasitism. Numbers above bars indicate numbers of cases. *P < 0.01; chi-
square test (see Results).
and rejection errors of hosts’ own eggs were associated with the
increased rejection rates of single cuckoo eggs as they were docu-
mented only in nests with single parasitism.

A previous study revealed different results on great reed
warblers’ egg discrimination in multiple parasitism, yet they all
seem to be the simple consequences of the mimicry of the exper-
imental eggs: Honza & Moskát (2005) found that two types of
experimental eggs, both rejected at a high rate (68–75%) in single
parasitism, were rejected at about 96% when both were used for
multiple experimental parasitism. In contrast to our present
experiments, in previous experiments both of the parasite eggs fell
outside the hosts’ acceptance threshold for their own eggs (Hauber
et al. 2006) and the two easily recognizable eggs appeared to
facilitate the hosts’ egg discrimination, in support of the discor-
dance mechanism (see Introduction). Both the model cuckoo eggs
used in the multiple parasitism experiments by Honza & Moskát
(2005) and the natural cuckoo eggs in our study area (cf Moskát &
Honza 2002) showed different levels of mimicry to host eggs
(measured by the method of Moksnes & Røskaft 1995; Kruskal–
Wallis test: c2

2 ¼ 15.010, N ¼ 158, P ¼ 0.001), which explains the
differences in egg rejection rates in multiple parasitism by Honza &
Moskát (2005) and the present study (96% versus 12%; Fisher’s
exact test: P < 0.001).

Apart from mimicry (Honza & Moskát 2005 versus this study),
intraclutch variation in host eggs (Stokke et al. 1999; Cherry et al.
2007a; Moskát et al. 2008a), hosts’ age (Lotem et al. 1992, 1995),
nonrandom selection of hosts (Hauber 2001; Grim 2002; Hauber
et al. 2004; Garamszegi & Avilés 2005; Parejo & Avilés 2007),
previous experience with the parasite egg (Rodrı́guez-Gironés &
Lotem 1999; Hauber et al. 2006; Honza et al. 2007b) and variable
host genetic backgrounds (Martı́n-Gálvez et al. 2006) may also
affect rates of hosts’ egg rejection in response to multiple para-
sitism. In the great reed warbler, other important factors include
the host’s sighting of a cuckoo near the nest (Bártol et al. 2002),
experience with its own eggs throughout the laying stage (Moskát
& Hauber 2007), breeding stage (Moskát 2005) and time of day
(Dyrcz & Halupka 2007). Habitat structure and immigration of
parasite-naı̈ve individuals (Takasu et al. 1993; Røskaft et al. 2002b,
2006), through a metapopulation effect (Barabás et al. 2004;
Hauber et al. 2004), might also affect antiparasite defence in our
population. However, our results revealed no statistical relation-
ship with laying date or interannual differences in rejection rate
from nests with single versus multiple parasitism, and so increased
tolerance to parasite eggs in multiple parasitism seems to be a fairly
robust effect.

Surprisingly, fitness correlates of the parasite with multiple
parasitism in our observational data set yielded an increased egg-
to-fledging success of parasite eggs, owing to reduced rejection of
parasite eggs in multiple parasitism. Yet, as with all observational
data sets, consistent variation in rejection rates of cuckoo eggs by
hosts in naturally parasitized nests can be explained by parameters
not measured in the observational portion of our study. For
example, differences in visit rates to host nests by prospecting and
laying parasites have been implicated in shifting acceptance
thresholds of cuckoo eggs by other host species (e.g. Brooke et al.
1998). However, we recorded this last confound in our experi-
mental approach because we increased the variability of eggs in
nests with simulated multiple parasitism solely by using two
different egg types compared with one egg type in host nests with
simulated single parasitism. This in turn resulted in the same
directional change of decreasing host rejection rates as seen in the
naturally parasitized nests. Nevertheless, experimental work is
required to determine the factors influencing which evictor cuckoo
chick survives in the nest with multiple parasitism, such as
hatching asynchrony or sex-specific development of the parasite



C. Moskát et al. / Animal Behaviour 77 (2009) 1281–12901288
(Tonra et al. 2008). In our study, only one cuckoo chick survived per
parasitized brood but in some hosts of the cuckoo, including the
redstart, Phoenicurus phoenicurus, in Finland, multiple cuckoo
chicks can survive per host brood, alongside the hosts’ own chicks
(Rutila et al. 2002; Grim et al. 2009), implying that perhaps genetic,
host race differences might also mediate cuckoo success in the
presence versus absence of multiple parasitism.

From the perspective of the brood parasites, counter to expec-
tations for an evictor brood parasite whose chicks do not tolerate
other host or parasite chicks in the nest (Hauber & Moskát 2008),
our results surprisingly show that multiple parasitism seems not to
be detrimental, because hosts’ antiparasite defences against
multiple parasite eggs in a clutch are weaker than against single
parasite eggs. In the absence of genetic data on these eggs, we do
not know for certain whether multiple cuckoo eggs were laid by the
same females. None the less, our photos of nests with multiple
cuckoo eggs showed consistent differences between parasite eggs,
suggesting laying by different females (Moksnes et al. 2008), as
seen in other avian brood parasite taxa (Martı́nez et al. 1998;
McLaren et al. 2003; Ellison et al. 2006). The reduced rate of
rejection of cuckoo eggs from multiply parasitized nests might also
act against the evolution of the recognition and rejection of other
parasite eggs by laying female cuckoos (Brooker et al. 1990; Brooker
& Brooker 1998).

In conclusion, we have found that multiple natural parasitism
may play a key factor in cuckoo egg discrimination of great reed
warblers, causing a highly significant reduction of rejection rates.
We demonstrated this shift in multiple experimental parasitism by
using simultaneously one mimetic and one nonmimetic egg. As
a consequence of hosts’ limited egg rejection responses to multiple
parasitism, cuckoos’ reproductive success was higher in clutches
with multiple parasitism. However, multiple parasitism is also
costly for cuckoos: because of the multiple eggs invested in the
same nest only one cuckoo chick can fledge (Wyllie 1981). An
equilibrium between an individual female cuckoo’s benefits of
increased hatching and fledging success of her young and the costs
of losing eggs and chicks to intraspecific competition by evictor
parasite chicks may exist in populations exposed to a longstanding
high parasitism pressure and a consistently high proportion of
nests with multiple parasitism.
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